This blog is part of an online learning platform which includes the Pathways to New Community Paradigms Wiki and a number of other Internet based resources to explore what is termed here 'new community paradigms' which are a transformational change brought about by members of a community.

It is intended to offer resources and explore ideas with the potential of purposefully directing the momentum needed for communities to create their own new community paradigms.

It seeks to help those interested in becoming active participants in the governance of their local communities rather than merely passive consumers of government service output. This blog seeks to assist individuals wanting to redefine their role in producing a more direct democratic form of governance by participating both in defining the political body and establishing the policies that will have an impact their community so that new paradigms for their community can be chosen rather than imposed.

Thursday, December 28, 2017

Using Systems Practice to Unravel Complexity (Conceptually)

This section of the SP UK course focuses on the diversity of activities considered to constitute ‘managing’ in the working with others involved in a complex situation. More specifically, managing undertaken by a systems practitioner of both the complex situation being investigated and the relationships between those involved in that complex situation including the systems practitioner. The course asserts that systems thinking can simplify complexity by taking multiple partial views but admits that this needs some explanation. The process being undertaken by this blog could be deemed asynchronous co-learning because again, it is not meant as a substitute for actually taking the course.

An unfolding network of conversation and relationships. ‘Managing’ involves maintaining a network of asynchronous relationships in the context of an ever-changing flux of events and ideas. As any manager engages in one conversation, others are engaged in different conversations. As individuals participate in different conversations a coherent network of conversations results (adapted from Winter, 2002, p. 67 and p. 83).

Many complex situations involve many different people with different perspectives. Understanding multiple perspectives involves first recognizing and acknowledging one's own worldview then reflecting on the relationships one has with the other participants and with the complex situation itself. Although this is hard to do for other people as we cannot truly experience or know their perspective on the world as they see it there are tools and techniques which can help you ‘imagine’ what those other perspectives might be. We can use systems tools and approaches to bring out other people's perspectives in ways that respects and represents their views. This, however, entails its own challenges.

The course advises besides being clear and explicit about one’s own point of view and considering different perspectives, using techniques such as systems mapping or as termed by the course systems diagramming as a means of mediating the different perspectives.

A particular type of systems diagram then is used to get participants to structure and capture their own thinking about a given situation and that diagram with any accompanying or recordings are then a set of perspectives for grounding a systems investigation.

Involving others through a diagram, according to the SP UK course, can take two main forms, co-creation of a collective diagram and using a diagram as the focus for a mediated discussion of the situation that the diagram represents. While agreeing with both techniques being powerful in helping those involved to gain a shared understanding of a situation by drawing out the different perspectives, they don’t seem truly separate but more intertwined. Co-creation is arguably always the better option as people own what they create but a systems practitioner with more experience may also have to mediate at certain times to allow co-creation to continue.

This, according to the course, depends on the relationships involved and whether one is taking the role of a ‘manager’ who is part of the situation or of a ‘researcher’ who is an observer of the situation or better to my mind both. Furthermore, it shouldn't be thought, in my view, that there is only one manager or one researcher. All participants can take on these roles to some extent.

The course advices that as a ‘researcher’, “One needs to understand and acknowledge the limitations and constraints that a particular diagram brings to your study and to build in processes that ensure a reasonable degree of robustness to the information gathered and how it is analyzed and reported”.

Contribution to a group process includes proposing new ideas, seeking clarification, providing information, summarizing what has been said, providing support for other people’s ideas and being open to other people’s arguments. Impeding a group's effectiveness could include attacking other people’s suggestions, being perhaps very defensive about their own suggestions, talking at the same time as someone else and talking aimlessly without adding to the discussion.

If several people work together to produce a single diagram as their perspective on a system then they have to find some way of coming to an agreement, which takes one of two paths. Either they aim to achieve functional, but superficial, conformity, which was my primary concern with Systems Practice US and other forms of democracy by app or algorithmic programming, or they take the time to aim for a deeper consensus.

Sometimes behavior and action can be changed as a result of thinking being changed without any need for explicit, written action points. Often though it may require developing a negotiated set of actions for moving on to say implementation, as in connecting ideas together for strategic application to begin overcoming what Jeffrey Pfeffer and Robert I. Sutton called the Knowing-Doing Gap.

The course cites C. W. Churchman (1971) who identified nine conditions for assessing the adequacy of any purposeful system's design. He argued that these conditions must be fulfilled for a system to demonstrate purposefulness. These nine conditions were later reordered into three groups of three conditions each, with the addition of each group having a particular corresponding category of social role – client, decision maker, and planner. Churchman seems to have never named the groups themselves.

Werner Ulrich (1983) later added two allied categories "role specific concerns" and "key problems” with each of the associated social roles. Ulrich also identified each group with a term reflecting a primary source of influence - motivation, control, or expertise for the social roles of client, decision maker, and planner (or ‘designer’) respectively. The course sets the groups of Churchman & Ulrich’s purposeful system's design roles, conditions and influences in Table 1 provided by the SP UK course here.

Although purpose in relation to such a system’s approach is addressed, the focus of the section is more on ‘involvement’ in a purposeful system's design which is being interpreted as the influences a social role has and what influences that social role, along with other associated categories.

The decision was made to create a systems diagram or systems map, as featured the previous week of the course (but to be dealt with in the next post) based on Churchman & Ulrich’s purposeful system's design chart, using the Kumu mapping system. The emerging objective came to be moving from an apparently complicated, management-oriented but constrained configuration to a more complex and while still contained more unbounded configuration requiring greater collaboration.

This presumes though others are not only familiar with systems diagrams or maps but also familiar with the Kumu mapping program. If several people are all contributing to the development of a diagram then it’s likely their knowledge of the particular diagramming technique, their disposition towards it and expectations of what will come from it will be different.

This is in addition to asking others to have changed their basic vantage point of thinking primarily longitudinally or by reductionistic and algorithmic means instead of expanding their perspective by thinking latitudinally or more holistically in their own understanding of the situation, as discussed in previous posts, and being able to apply different systems thinking methodologies.

For this reason, a Kumu presentation, intended to explain to anyone unfamiliar with Kumu navigation, was created (finally, after lengthy but lackluster good intentions), as well as a Kumu presentation on the alternative systems maps, of Churchman & Ulrich’s purposeful system's design, conveying the information in more of a story format. The intention is to break down the complexity into smaller chunks. This still adds a good deal of data though beyond the complex issues themselves with which others must contend.

When the purposeful system's design is placed graphically on a page, the three groups can be seen as separate, with a particular source for which there is one for each group, in the center. The three conditions for a particular group are placed then around with each one connected to the source, each other and a corresponding category. It is these categories that are most apparent to the world. This worded explanation is arguably not as intuitive as the picture should be.

This section of the course dealt in large part with abstract, conceptual ideas of managing complexity and creating purposeful system design but it addressed these issues through the hands-on approach of diagramming, at least conceptually if not practically. This is the main difference between the SP UK course and the SP US course with the later putting far greater emphasis on hands-on group diagramming. Different types of diagrams will be the focus of the next post.

No comments:

Post a Comment

Past Posts